Developments in ducted water current turbines
نویسنده
چکیده
Unlike conventional hydro and tidal barrage installations, water current turbines in open flow can generate power from flowing water with almost zero environmental impact, over a much wider range of sites than those available for conventional tidal power generation. Recent developments in current turbine design are reviewed and some potential advantages of ducted or “diffuser-augmented” current turbines are explored. These include improved safety, protection from weed growth, increased power output and reduced turbine and gearbox size for a given power output. Ducted turbines are not subject to the so-called Betz limit, which defines an upper limit of 59.3% of the incident kinetic energy that can be converted to shaft power by a single actuator disk turbine in open flow. For ducted turbines the theoretical limit depends on (i) the pressure difference that can be created between duct inlet and outlet, and (ii) the volumetric flow through the duct. These factors in turn depend on the shape of the duct and the ratio of duct area to turbine area. Previous investigations by others have found a theoretical limit for a diffuser-augmented wind turbine of about 3.3 times the Betz limit, and a model diffuseraugmented wind turbine has extracted 4.25 times the power extracted by the same turbine without a diffuser. In the present study, similar principles applied to a water turbine have so far achieved an augmentation factor of 3 at an early stage of the investigation.
منابع مشابه
Study of NACA 0015 for Diffuser Design in Tidal Current Turbine Applications (TECHNICAL NOTE)
Tidal energy is the most foreseeable form of renewable energy. Tidal energy can be harnessed by tidal barrage, tidal fence and tidal current technologies. Present efforts are focused on diffuser augmented tidal turbines that exploit the kinetic energy of the tidal currents. The power output by a tidal turbine is directly proportional to the cube of velocity of incoming fluid flow. Thus, even a ...
متن کاملDucted Turbine Blade Optimization Using Numerical Simulation
This paper presents a combined blade element (BE), computational fluid dynamics (CFD) method for performance analysis and optimization of ducted turbines. The model is similar to standard blade element momentum theory, except that CFD replaces the momentum equation for determining the induction factors. This eliminates many assumptions used in applying the typical blade element momentum (BEM) t...
متن کاملAn Investigation on Performance of Shrouding a Small Wind Turbine with a Simple Ring in a Wind Tunnel
Ducted wind turbines are a kind of small wind turbine having a diffuser or any other shape around the rotor which increases the air flow through the blades and absorbs more power. In the present study, a small wind turbine was ducted with a relatively simple ring and its performance was investigated in a wind tunnel. The duct is shaped using rolling steel sheets on a sloping surface and finally...
متن کاملHelical piles: an innovative foundation design option for offshore wind turbines.
Offshore wind turbines play a key part in the renewable energy strategy in the UK and Europe as well as in other parts of the world (for example, China). The majority of current developments, certainly in UK waters, have taken place in relatively shallow water and close to shore. This limits the scale of the engineering to relatively simple structures, such as those using monopile foundations, ...
متن کاملReview of Various Designs and Development in Hydropower Turbines
The growth of population, rising fossil fuel prices (limited and decreasing day by day), pollution problem due to use of fossil fuels and increasing electrical demand are important factors that encourage the use of green and renewable energy technologies. Among the different renewable energy technologies, hydro power generation (large and small scale) is the prime choice in terms of contributio...
متن کامل